Performance Metrics for Object Oriented Front End Computers

L.T. Hoff and J.F. Skelly, Brookhaven National Laboratory

Abstract

Front end computer software in the AGS and RHIC
control systems makes extensive use of object oriented
programming techniques. A conservative design ap-
proach to front end computer architecture has resulted in
systems that are not performance limited; however, sev-
era interesting performance challenges have been iden-
tified. Performance metrics are presented for these
situations. Programming techniques which foster high
performance object oriented software are discussed.

1WHY METRICS

The Object Oriented paradigm has been widely ac-
cepted for accelerator application software, but less so
in front end computers. This situation may partialy be
due to skepticism about the ability of object oriented
software to yield the performance necessary for the front
end environment. This report presents some examples of
the performance that can be accomplished with well
designed object oriented software in a real time envi-
ronment. These examples are followed by some tenets
for good design of object oriented software for a per-
formance-demanding environment.

2RAPID DEVICE-OBJECT UPDATE AT
A LINAC

The Linac injector at the AGS runs with a cycle rate
between 5.0 and 7.5 Hz, providing proton beam to other
users besides the AGS, and services multiple users
within each AGS cycle; each pulse of the Linac is dedi-
cated to one user, but the user may change from pulse to
pulse, afeature called PPM (pul se-to-pulse modulation).
Control of the Linac is implemented by 309 PPM de-
vices, i.e. devices whose setpoint is user dependent;
these devices must be sent a new user-dependent set-
point for each Linac cycle. In addition, another 109 non-
PPM devices do not have user-dependent setpoints, but
are read each cycle to update their measurements. Each
of these 418 hardware devices is managed by a corre-
sponding device abject in the front end computer soft-
ware.

These 418 devices are connected to the front end
computer by 4 (Datacon) field buses of local design,
similar to Mil-1553. The field bus implements a master-
dave protocol; in each transaction, a command for the
next Linac cycle is sent to a hardware device, and arely
is accepted which contains the measurement from the
previous Linac cycle. The controller for these field
buses is a VME card, which sends the commands and
collects the replies using on-board memory, triggered by

" Work supported by U.S. Department of Energy

timing signals. The processor then reads the reply
blocks from the memory on the field bus controller, and
invokes each device object to parse the appropriate reply
segment. This parsing operation permits each device
object to update its measurement and status information,
on a PPM basis, at the Linac cycle rate. Generation of
reports for clients (i.e. application programs) of the front
end computer is performed once per AGS cycle.

This activity was studied on a day when the AGS
cycle was 6.2 seconds, and the Linac was executing 40
Linac cycles per AGS cycle. The device-object update
rate was.

418 device-objects x 40 cycles/ 6.2 sec =
2700 device-object-updates/sec

The vxWorks "spy" command was used to deter-
mine the processor loading. The task that performed the
device-object updates consumed 20% to 25% of the
processor cycles, and other tasks each consumed 0% to
2%. This front end computer utilizes a Motorola
MVME162 processor with a 25 MHz 68040 cpu. Satu-
ration of the cpu is projected to occur at about 10,000
device-object updates per second with this processor.

3 FACTORY IDIOM FOR AN
EVENT SYSTEM

An event system is a mechanism for triggering the
execution of tasks in an FEC, based on the occurrence
of rea-world events such as hardware interrupts,
elapsed clock time, software signals, or signals from the
accelerator timing system. It is desirable that the event
system support rapid prototyping and rapid reconfigura-
tion. This requirement mandates that the programming
interface that associates an event with a software task
should be independent of the type of event. For exam-
ple, since accelerator signals may not be available dur-
ing software development, clock events may be substi-
tuted during commissioning of the software.

Moreover, extensibility is aso desirable, to permit
easy addition of new types of events. The goa of the
event system is to permit executing tasks of arbitrary
complexity, not just software that can run in an interrupt
service routine (ISR). Since the software must run at
task level, not in an ISR, time must be budgeted for a
task context switch between the triggering event and the
execution of the software task. For the MVME162 proc-
essor board, this constrains event frequency to less than
40 kHz. Individual events anticipated for use with the
event system had a maximum rate of 720 Hz, but higher
aggregate rates within a single FEC must be tolerated by
the event system.



The criteria requiring flexibility and extensibility
suggest the use of the "factory" or "virtua constructor”
idiom [1]. Performance constraints resulting from adop-
tion of this technique were evaluated.

The factory idiom is a technique for providing the
benefits of inheritance and polymorphism while hiding
the details of the derived classes from the code, which
invokes the constructors. A base class is defined which
implements a programming interface; derived classes
add speciaization but do not expand this interface. The
base class also provides a method for making new ob-
jects, which are actually instances of the derived classes;
this method uses context to determine which specific
derived classto instantiate.

The event system base class provides methods for
associating a software task with an event object, and a
method for triggering a software task when the event
occurs. The base class method which makes new objects
relies on an extensible lookup table to associate context
with a derived class, and provides a mechanism for de-
rived classes to extend this table. Each derived class is
responsible only for detecting the occurrence of its par-
ticular event, and for invoking the base class method
that triggers the software task.

Whereas the instantiation of event objects with the
factory idiom incurs additiona overhead, the time-
critical operation, triggering the software task, incurs
little or no overhead relative to a procedural solution.
Consequently this object oriented solution contributes
substantial organizational flexibility and simplicity
without compromising the realizable event trigger rate.

4 OBJECT ORIENTED PERFORMANCE
TECHNIQUES

Books and courses are available to instruct the student
in the proper use of object oriented languages, and it is
neither desirable nor possible to cover that materia
here. But a modest collection of techniques will serve
well to avoid the pitfalls that can prevent object oriented
software from achieving its full performance potential.
Many of these in fact are elementary principles that pru-
dent programmers should employ in any case.

4.1 Orthodox Canonical Class Form
The "orthodox canonical class form"[2], also known

as "value semantics’, is simply a collection of five fea-
tures that any well-designed class should provide. Ab-
sent these features, a class easily can be misused, quite
unintentionally, in ways that silently degrade perform-
ance. With these features specified, such misuse is
flagged by the compiler. These features are:

Default constructor

Copy constructor

Destructor

Conversion constructors

Assignment operator

4.2 Object Oriented Analysis and Design
It is entirely possible to write object oriented software
without conducting an object oriented analysis and de-
sign (OOAD) of the software project. But even ele-
mentary study of the project requirements may yield
insight into the regquirements which a class design
should satisfy, and which lead to fundamental specifi-
cations of class design, such as:
- Should methods be declared public, protected or
private.
Should methods be declared virtual .
Should data members be declared private or pro-
tected.
A proper OOAD addresses these issues, and ensures
proper use of heap space, constructers, and the orthodox
canonical class form.

4.3 Constructor Use

Object oriented languages offer the programmer
substantial power, since the compiler does so much
work behind the scenes. Certain constructors, specifi-
cally those which can be invoked with a single parame-
ter, are used by the compiler as if they were conversion
operators. The compiler may silently use these con-
structors in assignments or in subroutine invocations.
Such constructors should receive special attention to
ensure that their meaning as conversion operators is
appropriate.

Another opportunity for silent invocation of con-
structors occurs with automatic variables. Inattention to
the scope rules of automatic variables can likewise de-
grade performance.

4.4 Prudent Dynamic Memory Usage

Many C++ texts emphasize the “new” operator.
This operator has important characteristics not found in
procedural languages. However, this emphasis can be
misconstrued to mean that dynamic memory allocation
should be more commonly used in C++ than in proce-
dural languages. Using heap memory, rather than stack
or data memory incurs a performance penalty, and more
easily results in memory “leaks’. However, if C++
classes support value semantics, then instances can be
created as static, or automatic variables where appropri-
ate, avoiding these pitfalls.

5 REFERENCES

[1] “Advanced C++ Programming Styles and Idioms”,
James O. Coplien, Addison-Wedley Publishing Co.
pp. 140-159

[2] ibid pp. 38-45



